GENERAL CASE OF SPECULAR - DIFFUSE REFLECTION
OF RADIATION ON THE BOUNDARIES OF A PLANE
LAYER UNDER RADIATIVE — CONDUCTIVE HEAT
EXCHANGE CONDITIONS

A, A. Men' UDC 536.3:535.312

Linear integral equations describing the angular distribution of the radiation intensity at the
boundaries of a semitrangparent plane layer are formulated for arbitrary reflection indices,
The simpler models of specular and diffuse reflection investigated earlier are obtained as
particular cases of the general construction mentioned,

As is known, radiative—conductive heat exchange occurs in materials where two energy transfer
mechanisms coexist, heat conduction and radiation, Under such complex energy exchange conditions, the
radiation and temperature fields depend essentially on the character of the reflection of the radiation from
the body boundaries, In application to semitransparent media, i.e., to materials partially absorbing as well
ag partially emitting radiation, only the simplest models of specular [1, 4, 7] and diffuse [2-5] reflection
have been investigated in the literature, It is shown below that these particular cases can be obtained on
the basis of a more general analysis,

The reflection of radiation at the boundary of a medium is quite complex since each incident beam of
radiation is reflected in many directions within some solid angle whose axis coincides with the direction of
specular reflection because of the surface roughness, and the magnitude depends on the surface properties
and the angle of incidence, Let radiant energy with intensity Iy be incident at an angle ¢ within the solid
angle dw! on a portion dS of a surface (sketch), If Iyy(y) denotes the intensity in the specular direction for
reflected radiation, and I, (¢) in any other direction defined by the angle ¢, then by introducing the reflec-
tion index £y, (¥, ¢) = Iy (¢)/Iyy (¥) and the reflection coefficient Ry, (y) by using the energy conservation law,
we obtain

Ry (§) Ioycospde’ = [ 1, () (¢, @) cos pdo, (1)

o

Here w is the solid angle within which the reflection radiation is propagated so that dw = 27 sin ¢dy, We
call the quantity

Q) = jf(l]J, @) cos @ do (2)
the equivalent solid angle [8]. Using it, we find
. R, (’lp) 10\, cos '\]Jd(n’ (3)
Ly ()= .
Q(y)

Let radiation at all possible angles ¢ be incident on dS, Then

T2
2n cosq;dcoj R (9) Ty (0). f (P, @) cospsinpdip
o ew

“is reflected in the direction ¢ within dw, Let us introduce the quantity &,(¢)B,, for the characteristic of
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the intrinsic radiation of the boundaries, where B, is the spectral sur-
face brightness in the normal direction to the wall, and &, (¢) charac-
_terizes the angular distribution of the energy radiated by the surface,
If the layer boundaries are transmitting, then secondary radiation can
occur and in that case we consider it to be included in the quantity
€,(¢)B,. For simplicity we henceforth omit the subscript »,

Let us consider the radiation transfer equation
dl (x, ¢)
dx

cos ¢ =—kl (x, @) +j(x). (4
Lettlng I(Xs ¢)I|(p|<7|'/2 =I+ (X! <P), I(X’ (p + Tr)l|¢l<7T/2 = I_(X, (p)a the
change in ¢ in the range [-7/2, 7/2] can be examined by solving (4) sep-
arately for I, and I_, Since the latter have the sense of radiation in-
tensities going to the coordinate x from the left and right along the se-

Fig,1. Character of ra- lected direction ¢, the boundary conditions can be represented as

diation reflection at the 2 v

boundaryof the layer. 1,00, ¢) =¢(9) B+ 2n j Q_l% 1 (b, ©)1_(0, )sinip cos P dy;
1 -

G

1

/2
1_<h,q>>=ez(q>>32+2nj R0 g (
0

, @)1, (h, b)sin cos P dip.
o, (4) ¥, @ ) sinp

The subscripts 1 and 2 refer to the left and right boundaries, respectively. The solution of (4) appears thus:

N~y
I, 99=1,0, ¢)e ™ + jf(g)e oo _dE ()
s cos @
_k(h—x) A _R(E—2) 4
It oy=I_(h ¢)e =% + j ime = & %)
cos @

Solving (5) jointly, and using (6) and (7), we obtain the following integral equations for the quantities I..(0, ¢)
and I_(h, ¢) which govern the spatial distribution of radiation near the boundaries

2 __kk
100 =05+ 2 ‘&%”f (6 D) ey () Bee | “Vsinpcosp i
. 1
P=0
woe . _ w2 w2 ok
+2ﬂf fé%gfl(w, Q) i®)e “Vsinpdedp + 4n2j j Y&_@)_Wl
b=0gso ' oo 091 () @, (@)
I L k.(h—&)}
XF0h @) fs(@ $)jE)e Leosp ™ cosa cosp — simp sina didady
2 w2 R, (0) R, (@) _(‘kh kh )
A 42 1\ 2 \M%/) cosP cose; . . .
-+ 4n S j‘ 1,00, a) ——Ql W2, ©) 100, @) fala, ¥) e cosy simp cosa sine da dy; (8

P==0 &.=0
kh

m2
()= (@)By+ 25 | R8Dp g g)e, (4 Bie = cospsinpdp

Q, ()
$=0
w2k R, (%) _ k)
2 : cosp :
+on | [Bhw@i@e  dnpaar+ )

$=0t=0

w2 w2 h kE kh

Ry (0) Ry (0) oy, (e T o)
+4JI2 j‘ j\ 2 1 , , cosp
Sodods Q, (@) 2, (%) fa (’b P (o B iEe
v a2 w2 . _ ( kh K )
X cosyp simp sina df da dp 1 4n? j j 1_(h, ot)R2 (k) _R_l (@) FL (b, 0)Fy (@, p) e = % sing simp cosa cosy da dip.
V0 620 £, () Q, () _
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Here j¢) = j, [T ()] is the radiation coefficient, or the volume spectral density of the radiation. This quan~
tity is defined by the equality [9]

2
()= B8

Ig(v, T). (10)

The integral equations (8) and (9) are linear so that if the temperature field of the layer and the reflection
characteristics of the boundaries are known, the functions 1.0, ¢) and I_(h, ¢) can always be found by at
least numerical methods, If the temperature distribution in the layer must be found, then (8) and (9) are
solved jointly with the fundamental equation describing the temperafure field

dlv(q+E)+cv%?——0 (11)
where the radiation vector is found from the relationship
o /2
Em=2n | | [, (0@~ I_(x ¢)lsing cospdgdv. (12)
V=0 =0

Furthermore, let us examine two extreme cases, diffuse and specular reflection, In the first we should put
10, ©) =L@, @) =1 and should also consider the brightness of the boundaries and the reflection coefficients
R; and R, constant for all directions, If € and €,arethe emissivities of the walls, then By = £n?Ig(Ty); B,

= &h IB(TZ), where I (T4), Ig(T)) are the radiation intensities of a black surface at the temperatures T,

and Ty, In this cage the equivalent solid angles @ and @, equal 7, Now the right sides of (8) and (9) are
independent of ¢ so that the integral equations degenerate into algebraic. Taking account of the simplifica~
tions made we find for I(0) and I_(h) from {8) and (9)

h
1,(0) = [e415 (1) + 2Ryl (Ty) By (k) + 2R, | ] (B) E, (45) de

0

h
o+ ARRE, (k) [ ] (8)E, T (h— B)l dE| 1—4R,R,ES (k) (13)

0

I_() = (o4l (T3) + 2Roe,n%l 5 (T,) Ey (kh) + 2R, \ [ Byl (h— &)1 d

0

h
HARRE (k) [ §(8) E, (45) dk | [1—4R,R,ES (ki)™ (14
0

and, furthermore, by using (12)

E() =2 | ([1-—4RRES (k)™ | Ey (kyx) [en2 15 (v, T))

y==0

< 5 h
+ 2Ryl 5 (v, Tl — Eg [y (h— )] [l 5 (v, Ty) + 2R e el 5 (v, Ty) Ey (k)] -+ Eg (k) § J(§) [2RE, (k.E)
E=0

3
+ 4R RoEy (k1) Ey [Ry (B~ )] dE — E; [k, (h — x)] S J(E) [2R,E, [k, (h— )]

+ AR RE, (kih) Ey (BB)] d2 ] + [ (8) o [k, (x— E)] dE — j J(®) By (ky (8 — )1 d) dv (15)
E=0 ‘ £l

for the radiation vector E ). This expression agrees with the result obtained in [4] for diffuse reflection
with the sole difference that the emissivities and reflection coefficients of both boundaries are identical in
{4], but the guantities k and n are taken constant over the spectrum. To the accuracy of a transformation

divE = O—V, (16)

where ¢ and ¥ are the radiativity and absorptivity of the substance [10], (15) agrees with the relations found
under the assumption of "grayness" of the layer in [2, 8, 5].

Turning to specular reflection, let us note that f,(%, ¢) = £, ¢) = 6@/,, where the subscripts on the
symbol & denote directions within dw and dw', respectively, In this case
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Q=0,=2x S sitt @ cos @ do = 2m siny cos P dvp,
do*

and the integral equations (8) and (9) again degenerate, The functions I (0, ¢) and I_(h, ¢) are easily found

h
_ R 2
1,0,¢9)= [51 (@) By + Ry (9) &5 (9) B coso + j‘Rl (@JE)e coso <
9

0s ¢
h .
Eh—1 2 11 |
F ROR@IO orv ] [1-R @R o] an
. Cos @
. o o k=B g
I_(h, cp>=[ez(q>>Bz+R2(q>)s1<cp>Ble i+ (R —
: 0
R
ERLICE S A %, 1
4—'(_R1(¢)R2<cp)z(ae e e |- R @@ ] 9

[

. Again using {12), we find an expression for the radiation vector which agrees exactly with that obtained in
[7]:

@ x h
E@=2a { | [ W@®Ek (c—bld— {i,EEkE—2d-
v=0 E=0 t=x
Bomz o  hy(x+E) hy@htx—p)
+ | | h@[R@e Twe TROR@E T o
§=0 =0 ) _ )
pOh—x—8 ky (2h—x+E) %y
— R, (gp)e c0s @ — Ry (@) R, (p)e™ cosw—][l‘—R1(q)) R (@) e~ eosg ] 1siandcpd§
n_/? 2ky h = _ ky (htx)
+ ‘S sin @ cosq)[l — R (@) Ry (p)e™ cose } [EZ((P)B‘Z (Rl((P)e cos
=0 .
ky (h—x} ky x ky (2h~—x)
—e g ) a@Bie Tme— R@) e e )|dp)dv. (19)

Therefore, the integral equations (8) and (9) obtained include all possible cases of reflection of radia-
tion on the boundaries of a semitransparent medium,

NOTATION
L, () is the spectral radiation intensity in a direction governed by the angle ¢ to the normal;
B, @) is the spectral reflection coefficient in the specular direction;
@, o is the reflection index;
Q is the equivalent solid angle;
iy is the volume spectral density of the radiation;
Igw, T) is the Planck function;
By is the surface spectral brightness;
q =-AgradT is the heat flux vector;
Ex) is the radiant flux vector (radiation vector);
ky is the spectral absorption coefficient;
ny, is the spectral refractive index;
En® is the integrodifferential function of m-th order;
h is the layer thickness;
Cy is the volume specific heat;
X is the running space coordinate;
T is the time coordinate;
@, are the angles of observation;
gy (¢) is the spectral directed emissivity of surface.
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Subscripts

land 2 refer to the first and second boundaries, respectively;

r
0

[ I
°

denotes the reflected radiation;
is incident radiation,
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